9 research outputs found

    Combining Process Guidance and Industrial Feedback for Successfully Deploying Big Data Projects

    Get PDF
    Companies are faced with the challenge of handling increasing amounts of digital data to run or improve their business. Although a large set of technical solutions are available to manage such Big Data, many companies lack the maturity to manage that kind of projects, which results in a high failure rate. This paper aims at providing better process guidance for a successful deployment of Big Data projects. Our approach is based on the combination of a set of methodological bricks documented in the literature from early data mining projects to nowadays. It is complemented by learned lessons from pilots conducted in different areas (IT, health, space, food industry) with a focus on two pilots giving a concrete vision of how to drive the implementation with emphasis on the identification of values, the definition of a relevant strategy, the use of an Agile follow-up and a progressive rise in maturity

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Extension of requirements engineering in the space-time information : contributions in the context of management information systems

    No full text
    Dans un monde où les personnes et les objets sont de plus en plus connectés et localisés, l’information géographique (IG) est très présente dans notre quotidien et sa prise en compte dans les systèmes d'information (SI) de gestion devient incontournable. Les particuliers et les entreprises la mobilisent de manière croissante pour se repérer dans l’espace, accéder à diverses données statistiques géo-référencées, planifier des déplacements, etc.Les développements actuels sur les systèmes mobiles par exemple, impliquent de facto une dimension spatio-temporelle (ST), souvent réservée aux SI géographiques (SIG). Par conséquent, de nombreux systèmes logiciels sont amenés à entretenir une relation très étroite et précise avec le monde réel afin d'ouvrir de nouveaux champs d'applications comme les villes intelligentes, les usines du futur ou une nouvelle génération de systèmes de logistique.L'ampleur de cette évolution est majeure puisqu'en termes de données, au moins 80% sont concernées (http://www.esrifrance.fr/sig1.aspx). Cependant, un analyste est souvent confronté à des difficultés pour capturer des exigences d'une manière générale, rendant nécessaire une approche organisée et plus systématique. C'est dans ce contexte que nous orientons notre étude vers le domaine de l'ingénierie des exigences (IE) pour mieux construire un raisonnement qui prend en compte la dimension ST. C'est une étape clé dans le développement de telles exigences dans un projet d'évolution de SI de gestion.Le cadre proposé intègre des contributions dans les domaines de l'IE et de la géomatique. En ce sens, nous avons retenu particulièrement la méthode KAOS qui propose une approche d'IE orientée buts et outillée avec un logiciel nommé "Objectiver". Dans un premier temps, nous proposons une extension de la méthodologie KAOS à la dimension spatio-temporelle. KAOS répond déjà aux questions du "POURQUOI", du "COMMENT", du "QUOI" et du "QUI". Nous abordons dans notre recherche plus précisément, les questions du "QUAND "et du "OÙ". Nous utilisons pour ceci deux axes de recherche : d'une part nous explorons la dualité dimensions spatiales/temporelles, afin de transposer à la dimension spatiale des techniques d'IE déjà définies. D'autre part, nous prenons en considération des notations largement utilisées dans les SIG, et ce, afin de les intégrer dans les primitives d'IE et faciliter ainsi la capture d'exigences spatio-temporelles. Nous avons réalisé un prototype à l'aide de l'outil "Objectiver". Cependant, les résultats présentés restent applicables à d'autres méthodes et outils.Afin de pousser le plus possible l'évolution d'un système existant, nous proposons dans un deuxième temps, d'examiner plus spécifiquement des stratégies ouvertes d'intégration, exploitant ainsi des briques ouvertes en matière de données et/ou de services pour répondre à des besoins géomatiques identifiés. Nous pensons aux utilisateurs de ces SI qui doivent pouvoir intégrer des aspects spatiaux et temporels au sein de leurs règles de gestion ou règles métier.Se pose alors la question "comment identifier les aspects ST des règles métier par un processus d'IE ?" qui nous amène à réfléchir sur la construction d'un SI de gestion, qui soit capable de séparer la vue métier de la vue système. Nous montrons plus spécifiquement comment les règles métiers peuvent être identifiées sur la base d'aspects spatio-temporels. Nous avons outillé notre contribution et nous l'illustrons à travers une étude de cas réelle de fusion de deux universités. Ensuite, nous montrons à travers cette même étude de cas comment déployer de telles règles dans les composants les plus appropriés en veillant à garantir une architecture ouverte.In a world where people and objects are increasingly connected and localized, geographic information (GI) is very present in our daily life and its inclusion in the management information systems becomes essential. Individuals and enterprises mobilize increasingly to orient themselves in space, access to various statistical data georeferenced, plan travel...Current developments on mobile systems, for example, involve a space-time dimension, often reserved for geographic information systems (GIS). Therefore, many software systems are required to maintain a very close relationship and precise with the real world to open up new fields of application such as smart cities, factories of the future or a new generation of logistics systems.The magnitude of this change is major since in terms of data, at least 80% are concerned (http://www.esrifrance.fr/sig1.aspx). However, an analyst often faces difficulties in capturing requirements in general, necessitating an organized and systematic approach. It is in this context that we direct our study to the field of requirements engineering (RE) to better build an argument that takes into account the space-time dimension. This is a key step in the development of such requirements in a management information system development project.The proposed framework includes contributions in the fields of RE and geomatics. In this sense, we have particularly caught the KAOS method that offers a goal oriented requirements engineering approach and equipped with a software named "Objectiver".First, we propose an extension of the KAOS methodology in the space-time dimension. KAOS already answered the questions of "WHY", the "HOW", the "WHAT" and the "WHO". We approach our research specifically, the issues of "WHEN" and "WHERE". We use this for two lines of research : one explores the duality between space and time dimensions in order to transpose the spatial dimension of requirements engineering techniques already defined. On the other hand, we consider notations widely used in GIS, and to integrate them in primitive requirements engineering and thus facilitate the capture of space-time requirements. We made a prototype using the tool "Objectiver". However, the results presented are applicable to other methods and tools.To push as much as possible the performance of an existing system, we propose as a second step, to examine more specifically the open integration strategies and operating bricks started in data and/or services to meet geomatics to identified needs. We believe the users of these information systems must be able to integrate space-time aspects in their management rules or business rules.This raises the question "how to identify the space-time aspects of business rules by a RE process ?" Which brings us to reflect on the construction of a management information system that is capable of separating the business view and the system view. We show specifically how business rules can be identified on the basis of space-time aspects. We have equipped our contribution and illustrate through a real case study of merger of two universities. Next, we show through this same case study how to deploy such rules in the most appropriate components ensuring secure an open architecture

    Vers une modélisation et une analyse des exigences spatio-temporelles

    No full text
    National audienceRequirements Engineering (RE) is a key step in any project aiming at evolving an information system (IS). Current developments, on mobile systems for example, involve a spatial and temporal dimension, often reserved to geographic IS (GIS). This requires more systematic methods for capturing and reasoning about the spatial and temporal nature of requirements. This paper proposes a framework for systematically identifying, structuring and reasoning about such requirements. This proposed framework includes contributions in the fields of RE and geomatics. We illustrate it through a case study: the merger of two universities.L’Ingénierie des Exigences (IE) est une étape clef dans tout projet d’évolution d’un système d’information (SI). Les développements actuels, sur les systèmes mobiles par exemple, impliquent de facto une dimension spatio-temporelle, souvent réservée aux SI géographiques (SIG). Ceci nécessite des méthodes plus systématiques pour capturer et raisonner sur des exi- gences de nature spatio-temporelle. Cet article propose un cadre de référence permettant de systématiser l’identification, la structuration et le raisonnement sur ce type d’exigences. Ce cadre proposé intègre des contributions dans les domaines de l’IE et de la géomatique. Nous l’avons outillé et nous l’illustrons à travers une étude de cas de fusion de deux universités

    Stratégies ouvertes d'intégration de règles métiers géomatiques dans un système d'information de gestion

    No full text
    National audienceGeographic information is so present in our daily lives that its inclusion in information systems (IS) becomes unavoidable. These IS must be able to integrate spatial and temporal aspects into their business rules. Our goal is therefore to provide an IS evolutionary process to identify this type of business rules through a requirements engineering process (IE). We chose the KAOS method to implement our proposal through a case study. We also show how to deploy such rules in the most appropriate components for an open architecture.L’information géographique est si présente dans notre quotidien que sa prise en compte dans les systèmes d’information (SI) devient incontournable. Ces SI doivent pouvoir intégrer des aspects spatiaux et temporels au sein de leurs règles métier. Notre objectif est donc de proposer un processus d’évolution d’un SI permettant d’identifier ce type de règles métier à travers un processus d’ingénierie des exigences (IE). Nous avons retenu la méthode KAOS pour mettre en œuvre notre proposition à travers une étude de cas. Nous montrons également comment déployer de telles règles dans les composants les plus appropriés en faveur d’une architecture ouverte
    corecore